COMPOSITION OF THE ESSENTIAL OIL OF Arbutus unedo*

UDC 547.913+543.51

B. Kivcak,¹ T. Mert,¹ B. Demirci,² and K. H. C. Baser²

Water-distilled essential oil from leaves of Arbutus unedo L. of Turkish origin was analyzed by GC/MS. Thirty-seven constituents were characterized with (E)-2-decenal (12.0 %), α - terpineol (8.8 %), hexadecanoic acid (5.1 %), and (E)-2-undecenal (4.8 %) as the major constituents.

Key words: Arbutus unedo, Ericaceae, essential oil composition, (E)-2-decenal, α - terpineol, hexadecanoic acid, and (E)-2-undecenal.

Strawberry-tree (*Arbutus unedo* L.), an evergreen shrub belonging to the family *Ericaceae*, is distributed in regions bordering the Mediterranean Sea especially in Southern European countries [1, 2].

The leaves of *A. unedo* are used as diuretic, urinary antiseptic, antidiarrheal, astringent, depurative, against blenorrhagia, and as antihypertensive [3–5]. In Morocco, the leaves are used by hypertensive diabetic patients [3]. A tea from the leaves is used as diuretic in Turkey [4].

Previous studies on *A. unedo* were concentrated on the isolation and identification of its flavonoids (afzelin, juglanin, avicularin, quercitrin, hyperin) [6]. In other studies, the occurrence of phenolic glycosides (arbutin and methylarbutin), lipids, tannins, and vitamin E has been reported [7–10]. Emission rates of volatile organic compounds of *A. unedo* of were reported from Italy [11].

In this study, the chemical composition of Turkish strawberry-tree oil was studied for the first time.

The results of analysis of Turkish Strawberry-tree oil obtained by water distillation are shown in Table 1. The oil was analyzed by GC/MS. Thirty-seven components representing 76.7% of leaf oil were identified.

There is no previous report on strawberry-tree oil of Turkish origin. According to our results, the principal components identified were (E)-2-decenal, α - terpineol, hexadecanoic acid, and (E)-2-undecenal. Furthermore, appreciable quantities of 2,2,6,8-tetramethyl-7,11-dioxatricyclo(6.2.1.0)-1,6-undec-4-ene, nonanal, (E)-geranylacetone, β -ionone, nonanoic acid, myristic acid, hexahydrofarnesylacetone, and 3,4-dimethyl-5-pentylidene-2(5H)-furanone were also detected.

EXPERIMENTAL

Plant Material. The essential oil of *A. unedo* was isolated by water distillation of the comminuted leaves of the plant for 4 h. *A. unedo* leaves were collected in March 1999 from West Anatolia in Izmir-Cicekliköy, and identified by B. Kivcak. A voucher specimen (No 1251) is deposited in the herbarium of the Faculty of Pharmacy, Ege University, in Izmir.

GC/MS Analysis. The oil was analyzed by GC/MS using a Hewlett-Packard GCD system. An HP-Innowax FSC column (60 m \times 0.25 mm; 0.25 mm film thickness) was used with helium as carrier gas (1 mL/min). The injector temperature was at 250°C. GC oven temperature was kept at 60°C for 10 min and programmed to 220°C temperature at a rate of 4°C /min, and then kept constant at 220°C for 10 min and then programmed to 240°C at a rate of 1°C /min. Alkanes were used as

*Presented at the 4th International Symposium on the Chemistry of Natural Compound (SCNC), 6-8 June 2001, Isparta, Turkey.

¹⁾ Faculty of Pharmacy, Ege University, Bornova, 35100, Izmir, Turkey; 2) Medicinal and Aromatic Plant and Drug Research Centre (TBAM), Anadolu University, 26470, Eskisehir, Turkey. Published in Khimiya Prirodnykh Soedinenii, No. 3, pp. 379-380, September-October, 2001. Original article submitted September 21, 2001.

TABLE 1. Composition of the Essential Oil of Arbutus uned

RRI	Compound	%	RRI	Compound	%
1400	Nonanal	3.7	1827	(E,E)-2,4-Decadienal	0.5
1506	Decanal	0.5	1830	β -Damascone	0.3
1507	(E,E)-2,4-Heptadienal	0.6	1857	Geraniol	0.4
1548	(E)-2-Nonenal	0.5	1864	<i>p</i> -Cymen-8-ol	0.2
1553	Linalool	1.2	1868	(E)-Geranylacetone	3.8
1562	Octanol	1.9	1958	β -Ionone	3.4
1599	(E,Z)-2,6-Nonadienal	0.4	2037	Salvial-4(14)-en-1-one	0.3
1602	6-Methyl-3,5-heptadien-2-one	1.1	2084	Octanoic acid	1.7
1612	β -Caryophyllene	0.7	2131	Hexahydrofarnesylacetone	3.9
1638	β -Cyclocitral	0.8	2148	(Z)-3-Hexen-1-yl-benzoate	1.1
1648	2,2,6,8-Tetramethyl-7,11-	4.3	2179	3,4-Dimethyl-5-pentylidene-2(5H)-furanone	2.2
	dioxatricyclo(6.2.1.0)-1,6-undec-4-ene		2192	Nonanoic acid	3.9
1655	(E)-2-Decenal	12.0	2193	γ -Eudesmol	1.1
1706	α -Terpineol	8.8	2250	α -Eudesmol	0.6
1715	(E,E)-2,4-Nonadienal	0.3	2257	β -Eudesmol	0.5
1764	(E)-2-Undecenal	4.8	2503	Dodecanoic acid	1.6
1779	(E,Z)-2,4-Decadienal	0.7	2670	Myristic acid	2.3
1798	Methylsalicylate	0.7	2931	Hexadecanoic acid	5.1
1804	Myrtenol	0.3			
1815	2-Tridecanone	0.5		Total	76.6

RRI: Relative retention indices calculated against *n*-alkanes, % calculated from TIC.

reference points in the calculation of relative retention indices (RRI). Split ratio was adjusted at 50:1. MS were taken at 70 eV. Mass range was from m/z 35–425. Library search was carried out using Wiley GC/MS Library and TBAM Library of Essential Oil Constituents. Relative percentage amounts were calculated from TIC by computer.

REFERENCES

- 1. T. Baytop, *Theraphy with medicinal plants in Turkey* (past and present), No.3255, Istanbul, Publications of the Istanbul University (first edition), 1984, p. 305.
- 2. N. Zeybek, *Pharmaceutical Botany*, No 1, Izmir, Ege University Press, 1985, p. 200.
- 3. A. Ziyyad, A. Legssyer, A. Mekhfilt, A. Dassouli, M. Serhrouchni, and W. Benjelloun, *J. Ethnopharmacol.*, **58**, 45 (1997).
- 4. B. Cubukcu, and S. Suzgec, *Geleneksel ve Folklorik Droglar Dergisi*, **4**, 4 (1997).
- P. Eryasar and E. Tuzlaci, In: *New Trends and Methods in Natural Products Research*, Proceedings of the 12th International Symposium on Plant Originated Crude Drugs, Ed. by I.Calis, T.Ersoz, and A.A.Basaran, TUBITAK Press, p. 95 (1988).
- 6. J. C. Dauguet and J. P. Faucher, *Plant. Med. Phytother.*, **16**, 185 (1982).
- 7. S. Diamantoglou, and U. Kull, Ber. Dtsch. Bot. Ges., 97, 433 (1984).
- 8. M. S. Melletiou-Christou, S. Rhizopoulou, and S. Diamantoglou, Environ. Exp. Bot., 34, 129 (1994).
- 9. S. Chevolleau, C. Georges, and Fr. Demande, Patent No: FR2669032, (1992).
- 10. M. J. Amiot, S. Aubert, M. Gonnet, and M. Tacchini, *Apidologie*, **20**, 115 (1989).
- 11. S. Owen, C. Boissard, R. A. Street, S. C. Duckham, O. Csiky, and N. Hewitt, Atmos. Environ., 31(SI), 101 (1997).
- 12. E. Ibanez, S. Lopez-Sebastian, E. Ramez, J. Tabera, and G. Reglero, Food Chem., 63, 281 (1998).